
PART II AUTOMATA AND FORMAL LANGUAGES

MICHAELMAS 2018-19

EXAMPLE SHEET 4

Unless explicitly asked to, you need not prove that any machine, grammar or expression you
construct defines the language you say it does. ∗ denotes a harder problem.

(1) Let G be the CFG given by

S → ABS | AB, A→ aA | a, B → bA

For each of the words aabaab, aaaaba, aabbaa, abaaba, determine whether or not they lie
in L(G). If so, give a derivation and a parse tree; if not, explain why not.

(2) Convert the following CFG to CNF:

S → aSbb | T, T → bTaa | S | ε

(3) Give a CFG for each of the following CFL’s, and then transform each such CFG into
CNF:

(a) {anb2nck | k, n ≥ 1}

(b) {anbkan | k, n ≥ 1}

(c) {akbmcn | k,m, n ≥ 1, 2k ≥ n}

(4) For each of the following languages, either show that it is a CFL by constructing a CFG
for it, or use the pumping lemma to show that it is not a CFL:

(a) {anbm | n 6= m}

(b) {ambncmdn | m,n ≥ 1}

(c) {anbmckdl | 2n = 3m and 5k = 7l}

(d) {anbmckdl | 2n = 3k and 5m = 7l}

(e) {anbmckdl | 2n = 3k or 5m = 7l}

(f) {1p | p is prime}

(g) {a2n | n ≥ 1}

(h) {ww | w ∈ {a, b}∗}

(i*) {a, b}∗ \ {ww | w ∈ {a, b}∗}

(5) Let G be the CFG grammar generated by the CFG S → aSb | ε . Give a rigorous proof
that L(G) = {anbn | n ≥ 0}.

Date: November 21, 2018.

1

2 II A&FL EXAMPLE SHEET 4

(6) Construct NPDA’s which accept, either by final state or by empty stack, each of the
following languages:

(a) {w ∈ {a, b}∗ | w contains the same number of a’s and b’s}

(b) {aibjck | i = j or i = k}

(c) {wwR | w ∈ {0, 1}∗}

(7) Let G = (N,Σ, P, S) be a CFG in CNF. Suppose we form a new CFG G′ from G by
adding, for each production of the form B → a in P (where a ∈ Σ), the production
B → ε. Describe the new language L(G′) in terms of the original language L(G).

(8) Give a CFG which generates the set of syntactically correct (though perhaps mathemat-
ically false) arithmetic equations over N with addition and subtraction, allowing paren-
theses. For example, 4 + 9 = 11 − 20. Take as the set of terminals Σ = {+,−,=, (,),
0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. When designing your CFG, you may use words delimited by <>
as nonterminals. For example, you could use < start >, < number >, etc.

(9) Let L,M be CFL’s, and let a be any symbol. Show that the following are all CFL’s: ∅,
{ε}, {a}, L ∪M , LM , L∗, and LR (the reverse of L).
Conclude that every regular language is a CFL.

(10) Give a CFG which generates the set of regular expressions over the alphabet {0, 1}. Take
as the set of terminals Σ = {0,1, (,),+,∗ , ∅, ε}. Show that this language is not regular.

(11) (a) Show that the following two languages are both CFL’s:
L1 := {anbnci | n, i ≥ 1}, and L2 := {aibncn | n, i ≥ 1}.

(b) Show that the language L := {anbncn | n ≥ 1} is not a CFL.

(c) Show that L1 ∩L2 = L, and hence the intersection of two CFL’s isn’t always a CFL.

(d) Conclude that the complement of a CFL need not be a CFL.

(12) (a) Let G be a CFG in CNF, and w ∈ L(G) a word of length n ≥ 1. Show that any
derivation of w in G uses precisely 2n− 1 steps.

(b) Let G be a CFG in CNF with m nonterminals. Show that if L(G) 6= ∅, then L(G)
contains at least one word of length < 2m+1.

(c) Let G be a CFG in CNF with m nonterminals. Show that if L(G) contains a word
of length ≥ 2m+1, then L(G) is infinite.

(d*) Give an algorithm that, on input of a CFG G and a word w on the terminal symbols
of G, decides if w ∈ L(G) or not.

(e*) Give an algorithm that, on input of a CFG G, decides if L(G) = ∅ or not.

(13**) Prove that the intersection of a regular language with a CFL is a CFL.

